E-Mail Us Close
Please note that this email should only be used for feedback and comments specifically related to this particular medical policy.
  
Horizon BCBSNJ
Uniform Medical Policy ManualSection:Medicine
Policy Number:005
Effective Date: 12/24/2014
Original Policy Date:01/24/1998
Last Review Date:04/14/2020
Date Published to Web: 09/24/2014
Subject:
Ophthalmologic Techniques that Evaluate the Posterior Segment for Glaucoma

Description:
_______________________________________________________________________________________

IMPORTANT NOTE:

The purpose of this policy is to provide general information applicable to the administration of health benefits that Horizon Blue Cross Blue Shield of New Jersey and Horizon Healthcare of New Jersey, Inc. (collectively “Horizon BCBSNJ”) insures or administers. If the member’s contract benefits differ from the medical policy, the contract prevails. Although a service, supply or procedure may be medically necessary, it may be subject to limitations and/or exclusions under a member’s benefit plan. If a service, supply or procedure is not covered and the member proceeds to obtain the service, supply or procedure, the member may be responsible for the cost. Decisions regarding treatment and treatment plans are the responsibility of the physician. This policy is not intended to direct the course of clinical care a physician provides to a member, and it does not replace a physician’s independent professional clinical judgment or duty to exercise special knowledge and skill in the treatment of Horizon BCBSNJ members. Horizon BCBSNJ is not responsible for, does not provide, and does not hold itself out as a provider of medical care. The physician remains responsible for the quality and type of health care services provided to a Horizon BCBSNJ member.

Horizon BCBSNJ medical policies do not constitute medical advice, authorization, certification, approval, explanation of benefits, offer of coverage, contract or guarantee of payment.

__________________________________________________________________________________________________________________________

Several techniques have been developed to measure the thickness of the optic nerve and retinal nerve fiber layer as a method to diagnose glaucoma. Measurement of ocular blood flow is also being evaluated as a diagnostic tool for glaucoma.

Populations
Interventions
Comparators
Outcomes
Individuals:
· With glaucoma or suspected glaucoma
Interventions of interest are:
· Imaging of the optic nerve and retinal nerve fiber layer
Comparators of interest are:
· Clinical assessment alone
Relevant outcomes include:
· Test accuracy
· Symptoms
· Morbid events
· Functional outcomes
· Medication use
Individuals:
· With glaucoma or suspected glaucoma
Interventions of interest are:
· Evaluation of ocular blood flow
Comparators of interest are:
· Clinical assessment alone
Relevant outcomes include:
· Test accuracy
· Symptoms
· Morbid events
· Functional outcomes
· Medication use

Background

Glaucoma

Glaucoma is characterized by degeneration of the optic nerve (optic disc). Elevated intraocular pressure (IOP) has long been thought to be the primary etiology, but the relation between IOP and optic nerve damage varies among patients, suggesting a multifactorial origin. For example, some patients with clearly elevated IOP will show no optic nerve damage, while others with marginal or no pressure elevation will show optic nerve damage. The association between glaucoma and other vascular disorders (eg, diabetes, hypertension) suggests vascular factors may play a role in glaucoma. Specifically, it has been hypothesized that reductions in blood flow to the optic nerve may contribute to the visual field defects associated with glaucoma.

Diagnosis and Management

A comprehensive ophthalmologic exam is required for the diagnosis of glaucoma, but no single test is adequate to establish diagnosis. A comprehensive ophthalmologic examination includes assessment of the optic nerve, evaluation of visual fields, and measurement of ocular pressure. The presence of characteristic changes in the optic nerve or abnormalities in visual field, together with increased IOP, is sufficient for a definitive diagnosis. However, some patients will show ophthalmologic evidence of glaucoma with normal IOPs. These cases of normal tension glaucoma are considered to be a type of primary open-angle glaucoma. Angle-closure glaucoma is another type of glaucoma associated with an increase in IOP. The increased IOP in angle-closure glaucoma arises from a reduction in aqueous outflow from the eye due to a closed angle in the anterior chamber. Diagnosis of angle-closure glaucoma is detailed in 'Optical Coherence Tomography (OCT) of the Anterior Eye Segment' (Policy #059 in the Medicine Section).

Conventional management of patients with glaucoma principally involves drug therapy to control elevated IOPs, and serial evaluation of the optic nerve, to follow disease progression. Standard methods of evaluation include careful direct examination of the optic nerve using ophthalmoscopy or stereophotography, or evaluation of visual fields. There is interest in developing more objective, reproducible techniques both to document optic nerve damage and to detect early changes in the optic nerve and retinal nerve fiber layer (RNFL) before the development of permanent visual field deficits. Specifically, evaluating changes in RNFL thickness has been investigated as a technique to diagnose and monitor glaucoma. However, IOP reduction is not effective in decreasing disease progression in a significant number of patients, and in patients with normal tension glaucoma, there is never an increase in IOP. It has been proposed that vascular dysregulation is a significant cause of damage to the RNFL, and there is interest in measuring ocular blood flow as both a diagnostic and a management tool for glaucoma. Changes in blood flow to the retina and choroid may be particularly relevant for diagnosis and treatment of normal tension glaucoma. A variety of techniques have been developed, as described below. (Note: This evidence review only addresses techniques related to the evaluation of the optic nerve, RNFL, or blood flow to the retina and choroid in patients with glaucoma.)

Techniques to Evaluate the Optic Nerve and RNFL

Confocal Scanning Laser Ophthalmoscopy

Confocal scanning laser ophthalmoscopy (CSLO) is an image acquisition technique intended to improve the quality of the eye examination compared with standard ophthalmologic examination. A laser is scanned across the retina along with a detector system. Only a single spot on the retina is illuminated at any time, resulting in a high-contrast image of great reproducibility that can be used to estimate RNFL thickness. In addition, this technique does not require maximal mydriasis, which may be problematic in patients with glaucoma. The Heidelberg Retinal Tomograph is a commonly used technology.

Scanning Laser Polarimetry

The RNFL is birefringent (or biorefractive), meaning that it causes a change in the state of polarization of a laser beam as it passes. A 780-nm diode laser is used to illuminate the optic nerve. The polarization state of the light emerging from the eye is then evaluated and correlated with RNFL thickness. Unlike CSLO, scanning laser polarimetry (SLP) can directly measure the thickness of the RNFL. GDx is a common SLP device. GDx contains a normative database and statistical software package that compare scan results with age-matched normal subjects of the same ethnic origin. The advantages of this system are that images can be obtained without pupil dilation and evaluation can be completed in 10 minutes. Current instruments have added enhanced and variable corneal compensation technology to account for corneal polarization.

Optical Coherence Tomography

Optical coherence tomography (OCT) uses near-infrared light to provide direct cross-sectional measurement of the RNFL. The principles employed are similar to those used in B-mode ultrasound except light, not sound, is used to produce the 2-dimensional images. The light source can be directed into the eye through a conventional slit-lamp biomicroscope and focused onto the retina through a typical 78-diopter lens. This system requires dilation of the patient’s pupil. OCT analysis software is being developed to include optic nerve head parameters with spectral domain OCT, analysis of macular parameters, and hemodynamic parameters with Doppler OCT and OCT angiography.

Pulsatile Ocular Blood Flow

The pulsatile variation in ocular pressure results from the flow of blood into the eye during cardiac systole. Pulsatile ocular blood flow can thus be detected by the continuous monitoring of IOP. The detected pressure pulse can then be converted into a volume measurement using the known relation between ocular pressure and ocular volume. Pulsatile blood flow is primarily determined by the choroidal vessels, particularly relevant to patients with glaucoma, because the optic nerve is supplied in large part by choroidal circulation.

Techniques to Measure Ocular Blood Flow

A number of techniques have been developed to assess ocular blood flow. They include laser speckle flowgraphy, color Doppler imaging, Doppler Fourier domain OCT, laser Doppler velocimetry, confocal scanning laser Doppler flowmetry, and retinal functional imaging.1,

Laser Speckle Flowgraphy

Laser speckle is detected when a coherent light source such as laser light is dispersed from a diffusing surface such as retinal and choroidal vessels and the circulation of the optic nerve head. The varying patterns of light can be used to determine red blood cell velocity and retinal blood flow. However, due to differences in the tissue structure in different eyes, flux values cannot be used for comparisons between eyes. This limitation may be overcome by subtracting background choroidal blood flow results from the overall blood flow results in the region of interest.

Color Doppler Imaging

Color Doppler imaging has also been investigated as a technique to measure the blood flow velocity in the retinal and choroidal arteries. This technique delivers ultrasound in pulsed Doppler mode with a transducer set on closed eyelids. The examination takes 30 to 40 minutes, and is most effective for the mean velocity of large ophthalmic vessels such as the ophthalmic artery, the central retinal artery, and the short posterior ciliary arteries. However, total blood flow cannot be determined with this technique, and imaging is highly dependent on probe placement.

Doppler Fourier Domain OCT

Doppler Fourier domain OCT is a noncontact imaging technique that detects the intensity of the light scattered back from erythrocytes as they move in the vessels of the ocular tissue. This induces a frequency shift that represents the velocity of the blood in the ocular tissue.

Laser Doppler Velocimetry

Laser Doppler velocimetry compares the frequency of reflected laser light from a moving particle with stationary tissue.

Confocal Scanning Laser Doppler Flowmetry

Confocal scanning laser Doppler flowmetry combines laser Doppler flowmetry with confocal scanning laser tomography. Infrared laser light is used to scan the retina, and the frequency and amplitude of Doppler shifts are determined from the reflected light. Determinations of blood velocity and blood volume are used to compute the total blood flow and create a physical map of retinal flow values.

Regulatory Status

A number of CSLO, SLP, and OCT devices have been cleared by the U.S. Food and Drug Administration (FDA) through the 510(k) process for imaging the posterior eye segment. For example, the RTVue XR OCT Avanti™ (Optovue) is an OCT system indicated for the in vivo imaging and measurement of the retina, RNFL, and optic disc as a tool and aid in the clinical diagnosis and management of retinal diseases. The RTVue XR OCT Avanti™ with Normative Database is a quantitative tool for comparing retina, RNFL, and optic disk measurements in the human eye with a database of known normal subjects. It is intended as a diagnostic device to aid in the detection and management of ocular diseases. In 2016, the RTVue XR OCT and Avanti™ with AngioVue™ Software was cleared by FDA through the 510(k) process (K153080) as an aid in the visualization of vascular structures of the retina and choroid. FDA product code: HLI, OBO.

In 2012, the iExaminer™ (Welch Allyn) was cleared for marketing by FDA through the 510(k) process. The iExaminer™ consists of a hardware adapter and associated software (iPhone® App) to capture, store, send, and retrieve images from the PanOptic™ Ophthalmoscope (Welch Allyn) using an iPhone. FDA product code: HKI.

Table 1. Ocular Imaging Devices Cleared by the US Food and Drug Administration
Device
Manufacturer
Date Cleared
510.k No.
Indication
RESCAN 700 CALLISTO eyeCarl Zeiss Meditec AG1/11/2019K180229Imaging of optic nerve and retinal nerve fiber layer
Retina WorkplaceCarl Zeiss Meditec Inc10/24/2018K182318Imaging of optic nerve and retinal nerve fiber layer
Spectralis HRA+OCT and variants with High Magnification ModuleHeidelberg Engineering GmbH10/18/2018K182569Imaging of optic nerve and retinal nerve fiber layer
Spectralis HRA+OCT and variants with OCT Angiography ModuleHeidelberg Engineering GmbH9/13/2018K181594Imaging of optic nerve and retinal nerve fiber layer
Spectralis HRA + OCT and variantsHeidelberg Engineering GmbH8/30/2018K173648Imaging of optic nerve and retinal nerve fiber layer
Image Filing Software NAVIS-EXNidek Co. Ltd7/19/2018K181345Imaging of optic nerve and retinal nerve fiber layer
AvantiOptovue Inc.6/8/2018K180660Imaging of optic nerve and retinal nerve fiber layer
P200TEOptos plc2/28/2018K173707Imaging of optic nerve and retinal nerve fiber layer
DRI OCT TritonTopcon Corporation1/19/2018K173119Imaging of optic nerve and retinal nerve fiber layer
IMAGEnet 6 Ophthalmic Data SystemTopcon Corporation11/1/2017K171370Imaging of optic nerve and retinal nerve fiber layer
Spectralis HRA + OCT and variants Spectralis FA+OCT Spectralis ICGA+OCT Spectralis OCT Blue Peak Spectralis OCT with MulticolorHeidelberg Engineering GmbH11/1/2017K172649Imaging of optic nerve and retinal nerve fiber layer
PRIMUSCarl Zeiss Suzhou Co. Ltd.6/21/2017K163195Imaging of optic nerve and retinal nerve fiber layer
Retina WorkplaceCarl Zeiss Meditec AG6/21/2017K170638Imaging of optic nerve and retinal nerve fiber layer
iVueOptovue Inc.6/9/2017K163475Imaging of optic nerve and retinal nerve fiber layer
3D OCT-1 MaestroTopcon Corporation3/3/2017K170164Imaging of optic nerve and retinal nerve fiber layer
EnFocus 2300 EnFocus 4400Bioptigen Inc.12/9/2016K162783Imaging of optic nerve and retinal nerve fiber layer
PLEX Elite 9000 SS-OCTCARL ZEISS MEDITEC INC.10/26/2016K161194Imaging of optic nerve and retinal nerve fiber layer
3D OCT-1 MaestroTopcon Corporation7/28/2016K161509Imaging of optic nerve and retinal nerve fiber layer
LSFG-NAVISoftcare Co. Ltd5/12/2016K153239Imaging of optic nerve and retinal nerve fiber layer
Spectralis HRA + OCT and variants (e.g.s below) Spectralis FA+OCT Spectralis ICGA+OCT Spectralis OCT Blue Peak Spectralis OCT ith MulticolorHeidelberg Engineering GmbH5/6/2016K152205Imaging of optic nerve and retinal nerve fiber layer
RTVue XR OCT Avanti with AngioVue SoftwareOPTOVUE INC.2/11/2016K153080Imaging of optic nerve and retinal nerve fiber layer
EnFocus 2300 EnFocus 4400BIOPTIGEN INC.12/2/2015K150722Imaging of optic nerve and retinal nerve fiber layer
Optical Coherence TomographyCARL ZEISS MEDITEC INC9/1/2015K150977Imaging of optic nerve and retinal nerve fiber layer
OCT-CameraOptoMedical Technologies GmbH3/4/2015K142953Imaging of optic nerve and retinal nerve fiber layer
RESCAN 700 CALLISTO EYECARL ZEISS MEDITEC AG11/18/2014K141844Imaging of optic nerve and retinal nerve fiber layer
PROPPER INSIGHT BINOCULAR INDIRECT OPHTHALMOSOPEPROPPER MANUFACTURING CO.INC.9/17/2014K141638Imaging of optic nerve and retinal nerve fiber layer
CENTERVUE MACULAR INTEGRITY ASSESSMENTCENTERVUE SPA4/23/2014K133758Imaging of optic nerve and retinal nerve fiber layer
AMICO DH-W35 OPHTHALMOSCOPE SERIESAMICO DIAGNOSTIC INCORPORATED3/26/2014K131939Imaging of optic nerve and retinal nerve fiber layer
IVUE 500OPTOVUE INC.3/19/2014K133892Imaging of optic nerve and retinal nerve fiber layer
RS-3000 ADVANCENIDEK CO. LTD.2/19/2014K132323Imaging of optic nerve and retinal nerve fiber layer

Related Policies

  • Optical Coherence Tomography (OCT) of the Anterior Eye Segment (Policy #059 in the Medicine Section)

Policy:
(NOTE: For Medicare Advantage, Medicaid and FIDE-SNP, please refer to the Coverage Sections below for coverage guidance.)

1. Analysis of the optic nerve (retinal nerve fiber layer) in the diagnosis and evaluation of members with glaucoma or glaucoma suspects is considered medically necessary when using scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography.

2. The measurement of ocular blood flow, pulsatile ocular blood flow, or blood flow velocity is considered investigational in the diagnosis and follow-up of members with glaucoma.


Medicare Coverage:
There is no National Coverage Determination (NCD) for Ophthalmologic Techniques that Evaluate the Posterior Eye Segment for Glaucoma. In the absence of an NCD, coverage decisions are left to the discretion of Local Medicare Carriers. Novitas Solutions, Inc., the Local Medicare Carrier for jurisdiction JL, has determined that Scanning Computerized Ophthalmic Diagnostic Imaging is covered for diagnosis and treatment of glaucoma, retinal disease and certain anterior segment disorders when the LCD medical criteria is met.
    Posterior segment scanning computerized ophthalmic diagnostic imaging (SCODI) is covered under the following circumstances:
      · For the diagnosis and management of an individual with mild, moderate, severe, or indeterminate stage glaucoma or who is suspected of having glaucoma.
      · Monitoring individuals being treated with chloroquine and/or hydroxychloroquine for the development of retinopathy.
      · The evaluation and treatment of individuals with conditions affecting the optic nerve (e.g., optic neuropathy) or retinal disease (e.g., macular degeneration, diabetic retinopathy) and in the evaluation and treatment of certain macular abnormalities (e.g., macular edema, atrophy associated with degenerative retinal diseases).
      For additional information and eligibility, please refer to Novitas Solutions Inc., Local Coverage Determination (LCD) Scanning Computerized Ophthalmic Diagnostic Imaging (L35038). Available to be accessed at Novitas Solutions, Inc., Medical Policy Search page: https://www.novitas-solutions.com/webcenter/portal/MedicareJL/pagebyid?contentId=00024370.

      Scanning computerized ophthalmic diagnostic imaging (SCODI) is not covered when performed to provide additional confirmatory information regarding a diagnosis which has already been determined.

      Medicaid Coverage:

      For members enrolled in Medicaid and NJ FamilyCare plans, Horizon BCBSNJ applies the above medical policy.

      FIDE SNP:

      For members enrolled in a Fully Integrated Dual Eligible Special Needs Plan (FIDE-SNP): (1) to the extent the service is covered under the Medicare portion of the member’s benefit package, the above Medicare Coverage statement applies; and (2) to the extent the service is not covered under the Medicare portion of the member’s benefit package, the above Medicaid Coverage statement applies.


      Policy Guidelines: (Information to guide medical necessity determination based on the criteria contained within the policy statements above.)

      This policy addresses techniques used to evaluate for glaucoma and does not address other ophthalmic conditions.


      [RATIONALE: This policy was created in 1998 and has been updated regularly with searches of the MEDLINE database. The most recent literature update was performed through January 6, 2019.

      Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

      The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose. Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

      The use of various techniques of retinal nerve fiber layer (RNFL) analysis (confocal scanning laser ophthalmoscopy [CSLO], scanning laser polarimetry [SLP], optical coherence tomography [OCT]) for the diagnosis and management of glaucoma was addressed by 2 TEC Assessments (2001, 2003).2,3,

      Imaging of the Optic Nerve and RNFL

      Clinical Context and Test Purpose

      The diagnosis and monitoring of optic nerve damage are essential for evaluating the progression of glaucoma and determining appropriate treatment.

      The question addressed in this policy is: Do imaging techniques for the optic nerve and RNFL improve diagnosis and monitoring of glaucoma?

      The following PICOTS were used to select literature to inform this review.

      Patients

      The relevant populations are patients with glaucoma or who are suspected to have glaucoma and are being evaluated for diagnosis and monitoring of glaucoma progression.

      Interventions

      The tests being considered for assessment of the optic nerve and RNFL include CLSO, SLP, and OCT. These tests are considered add-on to the standard clinical evaluation.

      Comparators

      There is no single criterion standard for the diagnosis of glaucoma. This diagnosis is made from a combination of visual field testing, intraocular pressure (IOP) measurement, and optic nerve and RNFL assessment by an ophthalmologist.

      Outcomes

      Relevant outcomes include the clarity of the images and how reliable the test is at evaluating the optic nerve and nerve fiber layer changes. Demonstration that the information can be used to improve patient outcomes is essential for determining the utility of an imaging technology. Although direct evidence on the impact of the imaging technology from controlled trials would be preferred, in most cases, a chain of evidence needs to be constructed to determine whether there is a tight linkage between the technology and improved health outcomes. The outcomes relevant to this policy are IOP, loss of vision, and changes in IOP-lowering medications used to treat glaucoma.

      Timing

      For patients with manifest glaucoma, the relevant period of follow-up is the immediate diagnosis of glaucoma. For patients with suspected glaucoma, longer term follow-up would be needed to detect changes in visual field or RNFL. Clinical utility might be demonstrated by a change in the management and reduction in glaucoma progression across follow-up.

      Setting

      Patients may be self-referred, referred by optometrists, or referred by a general ophthalmologist to a glaucoma specialist. These procedures can be performed in an ophthalmologist’s office.

      Simplifying Test Terms

      There are 3 core characteristics for assessing a medical test. Whether imaging, laboratory, or other, all medical tests must be:

        • Technically reliable
        • Clinically valid
        • Clinically useful.
      Because different specialties may use different terms for the same concept, we are highlighting the core characteristics. The core characteristics also apply to different uses of tests, such as diagnosis, prognosis, and monitoring treatment.

      Diagnostic tests detect presence or absence of a condition. Surveillance and treatment monitoring are essentially diagnostic tests over a time frame. Surveillance to see whether a condition develops or progresses is a type of detection. Treatment monitoring is also a type of detection because the purpose is to see if treatment is associated with the disappearance, regression, or progression of the condition.

      Prognostic tests predict the risk of developing a condition in the future. Tests to predict response to therapy are also prognostic. Response to therapy is a type of condition and can be either a beneficial response or adverse response. The term predictive test is often used to refer to response to therapy. To simplify terms, we use prognostic to refer both to predicting a future condition or to predicting a response to therapy.

      Technically Reliable

      Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this policy and alternative sources exist. This policy focuses on the clinical validity and clinical utility.

      Clinically Valid

      A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

      In 2012, the Agency for Healthcare Research and Quality published a comparative effectiveness review of screening for glaucoma.4, Included were randomized controlled trials (RCTs), quasi-RCTs, observational cohort and case-control studies, and case series with more than 100 participants. The interventions evaluated included ophthalmoscopy, fundus photography or computerized imaging (OCT, retinal tomography, SLP), pachymetry (corneal thickness measurement), perimetry, and tonometry. No evidence was identified that addressed whether an open-angle glaucoma screening program led to a reduction in IOP, less visual impairment, reduction in visual field loss or optic nerve damage, or improvement in patient-reported outcomes. No evidence was identified on harms of a screening program. Over 100 studies were identified on the diagnostic accuracy of screening tests. However, due to the lack of a definitive diagnostic reference standard and heterogeneity in study designs, synthesis of results could not be completed.

      A Cochrane review (2015) assessed the diagnostic accuracy of optic nerve head and RNFL imaging for glaucoma.5, Included were 103 case-control studies and 3 cohort studies (total N=16,260 eyes) that evaluated the accuracy of recent commercial versions of OCT (spectral domain), Heidelberg Retinal Tomograph (HRT) III, or SLP (GDx VCC or ECC) for diagnosing glaucoma. The population was patients referred for suspected glaucoma, typically due to an elevated IOP, abnormal optic disc appearance, and/or an abnormal visual field identified in primary eye care. Population-based screening studies were excluded. Most comparisons examined different parameters within the 3 tests, and the parameters with the highest diagnostic odds ratio were compared. The 3 tests (OCT, HRT, SLP) had similar diagnostic accuracy. Specificity was close to 95%, while sensitivity was 70%. Because a case-control design with healthy participants and glaucoma patients was used in nearly all studies, concerns were raised about the potential for bias, overestimation of accuracy, and applicability of the findings to clinical practice.

      Clinically Useful

      A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

      Direct Evidence

      Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

      A technology assessment, conducted by Lin et al (2007) for the American Academy of Ophthalmology, reviewed 159 studies, published between 2003 and 2006, evaluating optic nerve head and RNFL devices used to diagnose or detect glaucoma progression.6, The assessment concluded: “The information obtained from imaging devices is useful in clinical practice when analyzed in conjunction with other relevant parameters that define glaucoma diagnosis and progression.” Management changes for patients diagnosed with glaucoma may include the use of IOP-lowering medications, monitoring for glaucoma progression, and potentially surgery to slow the progression of glaucoma.

      Section Summary: Imaging of the Optic Nerve and RNFL

      Numerous studies and systematic reviews have described findings from patients with glaucoma using CSLO, SLP, and OCT. Although the specificity in these studies was high, it is likely that accuracy was overestimated due to the case-control designs used in the studies. The literature and specialty society guidelines have indicated that optic nerve analysis using CSLO, SLP, and OCT are established add-on tests that can be used with other established tests to improve the diagnosis and direct management of patients with glaucoma and those who are glaucoma suspects. Management changes for patients diagnosed with glaucoma may include the use of IOP-lowering medications, monitoring for glaucoma progression, and potentially surgery.

      Evaluation of Ocular Blood Flow

      Clinical Context and Test Purpose

      The diagnosis and monitoring of optic nerve damage are essential for evaluating the progression of glaucoma and determining appropriate treatment. Measurement of ocular blood flow has been studied as a technique to evaluate patients with glaucoma or suspected glaucoma.

      The question addressed in this policy is: Do various techniques (eg, color Doppler imaging [CDI], Doppler Fourier domain OCT, laser Doppler velocimetry, confocal scanning laser Doppler flowmetry, retinal functional imager) for assessing ocular blood flow improve diagnosis and monitoring of glaucoma? One potential application is the early detection of normal tension glaucoma (NTG).7,

      The following PICOTS were used to select literature to inform this review.

      Patients

      The relevant patient populations are patients with glaucoma or suspected glaucoma and are being evaluated for diagnosis and monitoring of glaucoma progression. These tests may have particular utility for NTG.

      Interventions

      The tests being considered for assessment of the optic nerve and optic nerve layer include CDI, Doppler Fourier domain OCT, laser Doppler velocimetry, confocal scanning laser Doppler flowmetry, and retinal functional imager.

      Comparators

      There is no criterion standard for the diagnosis of glaucoma. The diagnosis of glaucoma is made using a combination of visual field testing, IOP measurements, and optic nerve and RNFL assessment.

      Outcomes

      Relevant outcomes include the reliability of the test for evaluating ocular blood flow and the association between ocular blood flow parameters and glaucoma progression. Demonstration that the information can be used to improve patient outcomes is essential to determining the utility of a diagnostic technology. Although direct evidence on the impact of the imaging technology from controlled trials would be preferred, in most cases, a chain of evidence is needed to determine whether there is a tight linkage between the technology and improved health outcomes. The outcomes relevant to this policy are IOP, loss of vision, and changes in IOP-lowering medications used to treat glaucoma.

      Timing

      For patients with manifest glaucoma, the relevant period of follow-up is the immediate diagnosis of glaucoma. For patients with suspected glaucoma, longer term follow-up would be needed to detect changes in IOP and loss of vision. Clinical utility might be demonstrated by a change in the management and reduction in glaucoma progression across follow-up.

      Setting

      Many of these procedures are performed with specialized equipment. While reports of use are longstanding (eg, Bafa et al [2001]8,), investigators have commented on the complexity of these parameters9, and have noted that many of these technologies are not commonly used in clinical settings.10,

      Technically Reliable

      Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this policy and alternative sources exist. This policy focuses on the clinical validity and clinical utility.

      Clinically Valid

      A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

      Abegao Pinto et al (2016) reported on the results from the prospective, cross-sectional, case-control, Leuven Eye Study, which included 614 individuals who had primary open-angle glaucoma (n=214), NTG (n=192), ocular hypertension (n=27), suspected glaucoma (n=41), or healthy controls (n=140).11, The study objective was to identify the blood flow parameters most highly associated with glaucoma using technology commonly available in an ophthalmologist’s office or hospital radiology department. Assessment of ocular blood flow included CDI, retinal oximetry, dynamic contour tonometry, and OCT enhanced-depth imaging of the choroid. The glaucoma groups had higher perfusion pressure than controls (p<0.001), with lower velocities in both central retinal vessels (p<0.05), and choroidal thickness asymmetries. The NTG group, but not the primary open-angle glaucoma group, had higher retinal venous saturation than healthy controls (p=0.005). There were no significant differences in macular scans. The diagnostic accuracy and clinical utility were not addressed.

      Kurysheva et al (2017) compared ocular blood flow with choroidal thickness to determine which had a higher diagnostic value for detecting early glaucoma.12, Thirty-two patients with pre-perimetric glaucoma were matched with 30 control patients. Using OCT, RNFL thickness between groups was found to be comparable; the ganglion cell complex was thicker in the control patients, and there was no significant difference between groups for choroid foveal loss volume. Mean blood flow velocity in the vortex veins had the highest area under the receiver operating characteristic curve ROC (1.0) and z-value (5.35). Diastolic blood flow velocity in the central retinal artery had a diagnostic value of 2.74 and area under the receiver operating characteristic curve of 0.73. The authors concluded that this study suggested a diagnostic benefit in measuring blood flow velocities.

      Witkowska et al (2017) investigated blood flow regulation using laser speckle flowgraphy in 27 individuals.13, In this prospective study, the authors specifically looked at mean blur rate blood flow in the optic nerve head and a peripapillary region. First, participants’ blood flow was measured when they were in a sitting position; then, participants were asked to perform an isometric “squatting” exercise for 6 minutes. Compared with baseline (sitting), exercise significantly increased ocular perfusion blood pressure (78.5%), mean blur rate in the tissue of the optic nerve head (18.1%), and mean blur rate in the peripapillary region (21.18.3%) (p<0.001). Few studies have used laser speckle flowgraphy to study autoregulation of ocular blood flow during a change in blood pressure, and this study is limited to Japanese populations. Despite the lack of literature and limited population, the authors noted laser speckle flowgraphy could be a valuable tool to study the regulation of blood flow in the optic nerve head, particularly in patients suspected of having glaucoma or patients who have glaucoma.

      Rusia et al (2011) reported on use of CDI in normal and glaucomatous eyes.14, Using data from other studies, a weighted mean was derived for the peak systolic velocity, end-diastolic velocity, and Pourcelot Resistive Index in the ophthalmic, central retinal, and posterior ciliary arteries. Data from 3061 glaucoma patients and 1072 controls were included. Mean values for glaucomatous eyes were within 1 standard deviation of the values for controls for most CDI parameters. Methodologic differences created interstudy variance in CDI values, complicating the construction of a normative database and limiting its utility. The authors noted that because the mean values for glaucomatous and normal eyes had overlapping ranges, caution should be used when classifying glaucoma status based on a single CDI measurement.

      Table 2. Summary of Key Nonrandomized Study Characteristics
      Study
      Study Type
      Country
      Dates
      Participants
      Treatment1
      Treatment2
      FollowUp
      Kurysheva (2017)12,ProspectiveRussiaNRPatients with pre-perimetric glaucoma (n=32) and age-matched controls (n=30)Optical coherence tomographyNR
      Witkowska (2017)13,ProspectiveAustria2015 - 2016Healthy subjects (n=27)Laser speckle flowgraphy
      POAG: primary open-angle glaucoma; NTG: normal-tension glaucoma; OHT: ocular hypertension; NR: not reported.

      Table 3. Summary of Key Nonrandomized Study Results
      Study
      AUC and Diagnostic Value AUC p-value
      Increase in OPP from Baseline
      Increase in MTONH from Baseline
      Increase in MTPPR from Baseline
      Kurysheva (2017)12,
      MBFV in VV1.0; <0.0001
      MBFV in CRV0.85; 0.0001
      DBFV in CRA0.73; 0.006
      DBFV in LSPCAs0.71; 0.011
      Witkowska (2017)13,78.5+/-19.8%18.1+/-7.7%21.1+/-8.3%
      AUC: area under the receiver operating characteristic curve; OPP: ocular perfusion pressure; MTONH: mean blur rate in the tissue of the optic nerve head; MTPPR: mean blur rate in the peripapillary region; MBFV: mean blood flow velocity; VV: vortex veins; CRV: central retinal vein; DBFV: diastolic vlood flow velocity; CRA: central retinal artery; LSPCA: lateral short posterior ciliary artery.

      Clinically Useful

      A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

      Direct Evidence

      Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

      The clinical utility of techniques to evaluate ocular blood flow is similar to that for other imaging techniques. The objective is to improve the diagnosis and direct management of patients with glaucoma or suspected glaucoma. Measures of ocular blood flow may have particular utility for the diagnosis and monitoring of NTG.

      The only longitudinal study identified is a study by Calvo et al (2012) on the predictive value of retrobulbar blood flow velocities in a prospective series of 262 who were glaucoma suspect.15, At baseline, all participants had normal visual field, increased IOP (mean, 23.56 mm Hg), and glaucomatous optic disc appearance. Blood flow velocities were measured by CDI during the baseline examination, and conversion to glaucoma was assessed at least yearly according to changes observed with CSLO. During the 48-month follow-up, 36 (13.7%) patients developed glaucoma and 226 did not. Twenty (55.5%) of those who developed glaucoma also showed visual field worsening (moderate agreement, κ=0.38). Mean end-diastolic and mean velocity in the ophthalmic artery were significantly reduced at baseline in subjects who developed glaucoma compared with subjects who did not.

      Chain of Evidence

      Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to demonstrate test performance, no inferences can be made about clinical utility.

      The evidence does not permit any inferences about the utility of ocular blood flow evaluation in the evaluation of glaucoma.

      Section Summary: Evaluation of Ocular Blood Flow

      Techniques to measure ocular blood flow or ocular blood velocity are being evaluated for the diagnosis of glaucoma. Data for these techniques remain limited. Current literature focuses on which technologies are most reliably associated with glaucoma. Literature reviews have not identified studies that suggest whether these technologies improve the diagnosis of glaucoma or whether measuring ocular blood flow in patients with glaucoma or suspected glaucoma improves health outcomes.

      Summary of Evidence

      For individuals who have glaucoma or suspected glaucoma who receive imaging of the optic nerve and RNFL, the evidence includes studies on diagnostic accuracy. Relevant outcomes are test accuracy, symptoms, morbid events, functional outcomes, and medication use. CSLO, SLP, and OCT can be used to evaluate the optic nerve and RNFL in patients with glaucoma and suspected glaucoma. Numerous articles have described findings from patients with known and suspected glaucoma using CSLO, SLP, and OCT. These studies have reported that abnormalities may be detected on these examinations before functional changes are noted. The literature and specialty society guidelines have indicated that optic nerve analysis using CSLO, SLP, and OCT are established add-on tests that may be used to diagnose and manage patients with glaucoma and suspected glaucoma. These results are often considered along with other findings to make diagnostic and therapeutic decisions about glaucoma care, including use of topical medication, monitoring, and surgery to lower IOP. Thus, accurate diagnosis of glaucoma would be expected to reduce the progression of glaucoma. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

      For individuals who have glaucoma or suspected glaucoma who receive evaluation of ocular blood flow, the evidence includes association studies. Relevant outcomes are test accuracy, symptoms, morbid events, functional outcomes, and medication use. Techniques to measure ocular blood flow or ocular blood velocity are used to determine appropriate glaucoma treatment options. The data for these techniques remain limited. Literature reviews have not identified studies addressing whether these technologies improve diagnostic accuracy or whether they improve health outcomes in patients with glaucoma. Some have suggested that these parameters may inform understanding of the variability in visual field changes in patients with glaucoma, ie, they may help explain why patients with similar levels of IOP develop markedly different visual impairments. However, data on use of ocular blood flow, pulsatile ocular blood flow, and/or blood flow velocity are currently lacking. The evidence is insufficient to determine the effects of the technology on health outcomes.

      SUPPLEMENTAL INFORMATION

      Clinical Input From Physician Specialty Societies and Academic Medical Centers

      While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

      In response to requests, input was received from 1 physician specialty society and 3 academic medical centers while this policy was under review in 2009. Most reviewers supported use of confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography in the care of patients with glaucoma and those with suspected glaucoma suspect. Reviewers provided data to demonstrate that this testing is equivalent to expert assessment of optic disc photography for both detecting glaucoma and showing disease progression. Reviewers also commented on favorable aspects of this testing. For example, unlike other glaucoma testing, these tests can be done more easily (eg, testing does not always need to be done with dilated pupils) and ambient light level may be (is) less critical. In addition, while serial stereophotographs of the optic nerves are considered by many as the criterion standard, they are not always practical, especially for general ophthalmologists. This testing also requires less cooperation from the patient, which can help when evaluating some older patients.

      Practice Guidelines and Position Statements

      American Academy of Ophthalmology

      The American Academy of Ophthalmology issued 2 preferred practice patterns (2015) on primary open-angle glaucoma suspect and primary open-angle glaucoma, both recommending evaluation of the optic nerve and retinal nerve fiber layer (RNFL).16,17, The documents stated that “Although they are distinctly different methodologies, stereoscopic disc photographs and computerized images of the nerve are complementary with regard to the information they provide the clinician who must manage the patient.” The guidelines described 3 types of computer-based imaging devices (confocal scanning laser ophthalmoscopy, scanning laser polarimetry, optical coherence tomography) currently available for glaucoma, which are similar in their ability to distinguish glaucoma from controls and noted that “computer-based digital imaging of the ONH [optic nerve head] and RNFL is routinely used to provide quantitative information to supplement the clinical examination of the optic nerve…. One rationale for using computerized imaging is to distinguish glaucomatous damage from eyes without glaucoma when thinning of the RNFL is measured, thereby facilitating earlier diagnosis and detection of optic nerve damage”. In addition, the Academy concluded that, as device technology evolves, the performance of diagnostic imaging devices is expected to improve.

      U.S. Preventive Services Task Force Recommendations

      Not applicable.

      Ongoing and Unpublished Clinical Trials

      Some currently unpublished trials that might influence this review are listed in Table 1.

      Table 1. Summary of Key Trials
      NCT No.Trial NamePlanned EnrollmentCompletion Date
      Ongoing
      NCT02178085Ocular Blood-flow Assessment by Magnetic Resonance Angiography in Glaucoma62Sep 2019
      NCT01957267Longitudinal Observational Study Using Functional and Structural Optical Coherence Tomography to Diagnose and Guide Treatment of Glaucoma160Dec 2022

      NCT: national clinical trial.]
      ________________________________________________________________________________________

      Horizon BCBSNJ Medical Policy Development Process:

      This Horizon BCBSNJ Medical Policy (the “Medical Policy”) has been developed by Horizon BCBSNJ’s Medical Policy Committee (the “Committee”) consistent with generally accepted standards of medical practice, and reflects Horizon BCBSNJ’s view of the subject health care services, supplies or procedures, and in what circumstances they are deemed to be medically necessary or experimental/ investigational in nature. This Medical Policy also considers whether and to what degree the subject health care services, supplies or procedures are clinically appropriate, in terms of type, frequency, extent, site and duration and if they are considered effective for the illnesses, injuries or diseases discussed. Where relevant, this Medical Policy considers whether the subject health care services, supplies or procedures are being requested primarily for the convenience of the covered person or the health care provider. It may also consider whether the services, supplies or procedures are more costly than an alternative service or sequence of services, supplies or procedures that are at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of the relevant illness, injury or disease. In reaching its conclusion regarding what it considers to be the generally accepted standards of medical practice, the Committee reviews and considers the following: all credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, physician and health care provider specialty society recommendations, the views of physicians and health care providers practicing in relevant clinical areas (including, but not limited to, the prevailing opinion within the appropriate specialty) and any other relevant factor as determined by applicable State and Federal laws and regulations.

      ___________________________________________________________________________________________________________________________

      Index:
      Ophthalmologic Techniques that Evaluate the Posterior Segment for Glaucoma
      Ophthalmologic Techniques for Evaluating Glaucoma
      Ophthalmologic Imaging Techniques for Evaluating Glaucoma
      GDx Nerve Fiber Analyzer
      Glaucoma Scope
      Laser Scanning Ophthalmoscope
      Nerve Fiber Layer Measurement, Retinal
      OCT (Optical Coherence Tomography)
      Optic Nerve Head Analyzers
      Optical Coherence Tomography
      Retinal Nerve Fiber Layer Measurement
      RNFL Measurement
      Scanning Laser Ophthalmoscopes
      Scanning Laser Polarimeter
      Topographic Scanning System (TopSS)
      TopSS (Topographic Scanning System)

      References:
      1. Mohindroo C, Ichhpujani P, Kumar S. Current imaging modalities for assessing ocular blood flow in glaucoma. J Curr Glaucoma Pract. Sep-Dec 2016;10(3):104-112. PMID 27857490.

      2. Blue Cross and Blue Shield Technology Evaluation Center (TEC). Retinal nerve fiber analysis for the diagnosis and management of glaucoma. TEC Assessments. 2001;Volume 16:Tab 13.

      3. Blue Cross and Blue Shield Technology Evaluation Center (TEC). Retinal nerve fiber layer analysis for the diagnosis and management of glaucoma. TEC Assessments. 2003;Volume 18:Tab 7.

      4. Ervin AM, Boland MV, Myrowitz EH, et al. Screening for Glaucoma: Comparative Effectiveness (Comparative Effectiveness Review No. 59). Rockville, MD: Agency for Healthcare Research and Quality; 2012.

      5. Michelessi M, Lucenteforte E, Oddone F, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. Nov 30 2015(11):CD008803. PMID 26618332.

      6. Lin SC, Singh K, Jampel HD, et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology. Oct 2007;114(10):1937-1949. PMID 17908595.

      7. Shiga Y, Omodaka K, Kunikata H, et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci. Nov 2013;54(12):7699-7706. PMID 24130177.

      8. Bafa M, Lambrinakis I, Dayan M, et al. Clinical comparison of the measurement of the IOP with the ocular blood flow tonometer, the Tonopen XL and the Goldmann applanation tonometer. Acta Ophthalmol Scand. Feb 2001;79(1):15-18. PMID 11167279.

      9. Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res. Aug 2011;93(2):141-155. PMID 20868686.

      10. Harris A, Kagemann L, Ehrlich R, et al. Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol. Jun 2008;43(3):328-336. PMID 18443609.

      11. Abegao Pinto L, Willekens K, Van Keer K, et al. Ocular blood flow in glaucoma - the Leuven Eye Study. Acta Ophthalmol. Sep 2016;94(6):592-598. PMID 26895610.

      12. Kurysheva NI, Parshunina OA, Shatalova EO, et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. Mar 2017;42(3):411-417. PMID 27341295.

      13. Witkowska KJ, Bata AM, Calzetti G, et al. Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy. PLoS One. Sep 12 2017;12(9):e0184772. PMID 28898284.

      14. Rusia D, Harris A, Pernic A, et al. Feasibility of creating a normative database of colour Doppler imaging parameters in glaucomatous eyes and controls. Br J Ophthalmol. Sep 2011;95(9):1193-1198. PMID 21106991.

      15. Calvo P, Ferreras A, Polo V, et al. Predictive value of retrobulbar blood flow velocities in glaucoma suspects. Invest Ophthalmol Vis Sci. Jun 2012;53(7):3875-3884. PMID 22589447.

      16. American Academy of Ophthalmology. Preferred Practice Pattern: Primary open-angle suspect. 2015; http://www.aaojournal.org/article/S0161-6420(15)01278-6/pdf. Accessed February 26, 2018.

      17. American Academy of Ophthalmology. Preferred Practice Pattern: Primary open-angle glaucoma. 2015; http://www.aaojournal.org/article/S0161-6420(15)01276-2/pdf. Accessed February 26, 2018.


      Codes:
      (The list of codes is not intended to be all-inclusive and is included below for informational purposes only. Inclusion or exclusion of a procedure, diagnosis, drug or device code(s) does not constitute or imply authorization, certification, approval, offer of coverage or guarantee of payment.)

      CPT*

        92133
        0198T
      HCPCS

      * CPT only copyright 2020 American Medical Association. All rights reserved. CPT is a registered trademark of the American Medical Association.

      _________________________________________________________________________________________

      Medical policies can be highly technical and are designed for use by the Horizon BCBSNJ professional staff in making coverage determinations. Members referring to this policy should discuss it with their treating physician, and should refer to their specific benefit plan for the terms, conditions, limitations and exclusions of their coverage.

      The Horizon BCBSNJ Medical Policy Manual is proprietary. It is to be used only as authorized by Horizon BCBSNJ and its affiliates. The contents of this Medical Policy are not to be copied, reproduced or circulated to other parties without the express written consent of Horizon BCBSNJ. The contents of this Medical Policy may be updated or changed without notice, unless otherwise required by law and/or regulation. However, benefit determinations are made in the context of medical policies existing at the time of the decision and are not subject to later revision as the result of a change in medical policy

      ____________________________________________________________________________________________________________________________